Showing posts with label simple linear regression. Show all posts
Showing posts with label simple linear regression. Show all posts

Wednesday, February 26, 2020

Simple Linear Regression

Simple Linear Regression is a linear regression model where we have one dependent and one independent variable.

We need to predict values for the dependent variable as a function of the independent variable.



Formula for Simple Linear Regression:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>b</mi><mn>0</mn></msub><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><msub><mi>x</mi><mn>1</mn></msub></math>

where

y is the dependent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>1</mn></msub></math> is the independent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>1</mn></msub></math> is the coefficient (connector between dependent and Independent)
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>0</mn></msub></math> is the Constant

Code Snippet:

from sklearn.linear_model import LinearRegression
simple_regressor = LinearRegression()
simple_regressor.fit(X_train, y_train)

# Prediction
y_pred = simple_regressor.predict(X_test)

Plot

plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, simple_regressor.predict(X_train), color = 'blue')
plt.show()