Showing posts with label regression. Show all posts
Showing posts with label regression. Show all posts

Wednesday, February 26, 2020

Multiple Linear Regression

Multiple Linear Regression is a regression model where we have multiple independent variables.

We need to predict values for the dependent variable as a function of the independent variables.



Formula for Multiple Linear Regression:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>&#xA0;</mo><msub><mi>b</mi><mi>o</mi></msub><mo>&#xA0;</mo><mo>+</mo><mo>&#x2009;</mo><msub><mi>b</mi><mn>1</mn></msub><msub><mi>x</mi><mn>1</mn></msub><mo>&#xA0;</mo><mo>+</mo><mo>&#xA0;</mo><msub><mi>b</mi><mn>2</mn></msub><msub><mi>x</mi><mn>2</mn></msub><mo>&#xA0;</mo><mo>+</mo><mo>&#x2009;</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>.</mo><mo>&#xA0;</mo><mo>+</mo><mo>&#x2009;</mo><msub><mi>b</mi><mi>n</mi></msub><msub><mi>x</mi><mi>n</mi></msub></math>

where

y is the dependent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>1</mn></msub></math> onwards are the the independent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>1</mn></msub></math> onwards is the coefficient (connector between dependent and Independent)
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>0</mn></msub></math> is the Constant

Always encode the categorical data if any after data import.

Code Snippet:

from sklearn.linear_model import LinearRegression
multi_regressor = LinearRegression()
multi_regressor.fit(X_train, y_train)

# Prediction
y_pred = multi_regressor.predict(X_test)





Simple Linear Regression

Simple Linear Regression is a linear regression model where we have one dependent and one independent variable.

We need to predict values for the dependent variable as a function of the independent variable.



Formula for Simple Linear Regression:


<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><msub><mi>b</mi><mn>0</mn></msub><mo>+</mo><msub><mi>b</mi><mn>1</mn></msub><msub><mi>x</mi><mn>1</mn></msub></math>

where

y is the dependent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>x</mi><mn>1</mn></msub></math> is the independent Variable
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>1</mn></msub></math> is the coefficient (connector between dependent and Independent)
<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>b</mi><mn>0</mn></msub></math> is the Constant

Code Snippet:

from sklearn.linear_model import LinearRegression
simple_regressor = LinearRegression()
simple_regressor.fit(X_train, y_train)

# Prediction
y_pred = simple_regressor.predict(X_test)

Plot

plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, simple_regressor.predict(X_train), color = 'blue')
plt.show()




Thursday, December 19, 2019

Regression and Residual

What is Regression?
Regression line helps us to predict change in Y for a change in X.

From previous example (https://mylearningcafe.blogspot.com/2019/12/correlation.html), we can see if we can determine the value of Y for a value of X.





What is Residual?
Residual tells us the error in the prediction (Actual value - predicted value).
We can see the difference from above known values.